7th French-German Workshop on Oxides, Dielectrics and Laser Crystals (DGKK-AK Oxide) 2018 September, 13th–14th, 2018, FEE, Idar-Oberstein, Germany

Crystals and Substrates for Semiconducting Oxide Applications

Z. Galazka, S. Ganschow, D. Klimm, R. Uecker, M. Bickermann*

Leibniz Institute for Crystal Growth (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany * Corresponding author, Tel.: +49 30 6392 3047, e-mail: matthias.bickermann@ikz-berlin.de

In this presentation, we provide an overview of the preparation of transparent semiconducting oxide (TSO) bulk single crystals [1] for use as substrates in novel oxide electronic applications. The main focus is on beta gallium oxide (β -Ga₂O₃) which is a very promising material for power electronics and currently receives a steep increase in worldwide interest. We have developed a Czochralski growth technique to produce β -Ga₂O₃ boules with 2-inch in diameter and up to 80 mm in length. To obtain such boules, the formation of volatile gallium suboxides and of metallic gallium in the melt must be carefully controlled [2]. Growth of n-type doped β -Ga₂O₃ features additional stability challenges that are also of high interest for growing other oxide compounds. Our current research focuses on incorporation of other dopants (Mg, Al, Ce, Cr) [3] and the preparation of gallates with spinel structure (MgGa₂O₄ [4], CoGa₂O₄, ZnGa₂O₄, InGaZnO₄) for improved properties as well as for novel applications, e.g. as neutron detector, scintillator, electroluminescent materials or as substrate for ferromagnetic thin films.

The second part of the presentation will provide the status and perspectives of other TSO bulk crystals such as indium oxide (In_2O_3) , tin dioxide (SnO_2) [1] and barium stannate $(BaSnO_3)$ [5]. The latter is an oxide featuring a very high electron mobility with 2DEG formation at interfaces when doped with lanthanum. BaSnO₃ bulk crystals could be used as substrates for homoepitaxy to provide benchmark properties.

Parts of this work have been performed within the framework of GraFOx, a Leibniz-ScienceCampus partially funded by the Leibniz association, and within the DFG-NCN joint project GO SCINT.

 E_g Single crystal Growth method material [eV] MgGa₂O₄ Melt - Czochralski 4.90 β -Ga₂O₃ Melt - Czochralski 4.85 Melt - Solidification ZnGa₂O₄ 4.60 Gas - PVT 3.75 SnO₂ Melt - Solidification 3.46 InGaZnO₄ ZnO Melt - Bridgman 3.37 Melt - Solidification BaSnO₃ 3.00 Melt - LASSCGM 2.76 In_2O_3

Gallium oxide bulk crystals with different dopants.

- [1] Z. Galazka, Growth Measures to Achieve Bulk Single Crystals of Transparent Semiconducting and Conducting Oxides, in: Handbook of Crystal Growth 2nd Edition, Vol. 2A, p. 209-240, Elsevier 2015
- [2] Z. Galazka et al., Scaling-up of Bulk β-Ga₂O₃ Single Crystals by the Czochralski Method, ECS J. Solid State Sci. Technol. 6 (2017) Q3007-Q3011
- [3] Z. Galazka et al., Doping of Czochralski-Grown Bulk β-Ga₂O₃ Single Crystals with Cr, Ce and Al, J. Crystal Growth 486 (2018) 82-90
- [4] Z. Galazka et al., MgGa2O4 as a New Wide Bandgap Transparent Semiconducting Oxide Growth and Properties of Bulk Single Crystals, Phys. Status Solidi A 212 (2015) 1455-1460
- [5] Z. Galazka et al., Melt Growth and Properties of Bulk BaSnO₃ Single Crystals, J. Phys.: Condens. Matter 29 (2017) 75701